DataChain¶
The DataChain
class creates a data chain, which is a sequence of data manipulation
steps such as reading data from storages, running AI or LLM models or calling external
services API to validate or enrich data. See DataChain
for examples of how to create a chain.
DataChain
¶
Bases: DatasetQuery
AI 🔗 DataChain - a data structure for batch data processing and evaluation.
It represents a sequence of data manipulation steps such as reading data from storages, running AI or LLM models or calling external services API to validate or enrich data.
Data in DataChain is presented as Python classes with arbitrary set of fields,
including nested classes. The data classes have to inherit from DataModel
class.
The supported set of field types include: majority of the type supported by the
underlyind library Pydantic
.
See Also
DataChain.from_storage("s3://my-bucket/my-dir/")
- reading unstructured
data files from storages such as S3, gs or Azure ADLS.
DataChain.save("name")
- saving to a dataset.
DataChain.from_dataset("name")
- reading from a dataset.
DataChain.from_values(fib=[1, 2, 3, 5, 8])
- generating from values.
DataChain.from_pandas(pd.DataFrame(...))
- generating from pandas.
DataChain.from_json("file.json")
- generating from json.
DataChain.from_csv("file.csv")
- generating from csv.
DataChain.from_parquet("file.parquet")
- generating from parquet.
Example
import os
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
from datachain.dc import DataChain, Column
PROMPT = (
"Was this bot dialog successful? "
"Describe the 'result' as 'Yes' or 'No' in a short JSON"
)
model = "mistral-large-latest"
api_key = os.environ["MISTRAL_API_KEY"]
chain = (
DataChain.from_storage("gs://datachain-demo/chatbot-KiT/")
.limit(5)
.settings(cache=True, parallel=5)
.map(
mistral_response=lambda file: MistralClient(api_key=api_key)
.chat(
model=model,
response_format={"type": "json_object"},
messages=[
ChatMessage(role="user", content=f"{PROMPT}: {file.read()}")
],
)
.choices[0]
.message.content,
)
.save()
)
try:
print(chain.select("mistral_response").results())
except Exception as e:
print(f"do you have the right Mistral API key? {e}")
Source code in datachain/lib/dc.py
agg
¶
agg(
func: Optional[Callable] = None,
partition_by: Optional[PartitionByType] = None,
params: Union[None, str, Sequence[str]] = None,
output: OutputType = None,
**signal_map
) -> Self
Aggregate rows using partition_by
statement and apply a function to the
groups of aggregated rows. The function needs to return new objects for each
group of the new rows. It returns a chain itself with new signals.
Input-output relationship: N:M
This method bears similarity to gen()
and map()
, employing a comparable set
of parameters, yet differs in two crucial aspects:
1. The partition_by
parameter: This specifies the column name or a list of
column names that determine the grouping criteria for aggregation.
2. Group-based UDF function input: Instead of individual rows, the function
receives a list all rows within each group defined by partition_by
.
Example
Source code in datachain/lib/dc.py
apply
¶
Apply any function to the chain.
Useful for reusing in a chain of operations.
Example
Source code in datachain/lib/dc.py
batch_map
¶
batch_map(
func: Optional[Callable] = None,
params: Union[None, str, Sequence[str]] = None,
output: OutputType = None,
batch: int = 1000,
**signal_map
) -> Self
This is a batch version of map()
.
Input-output relationship: N:N
It accepts the same parameters plus an additional parameter:
batch : Size of each batch passed to `func`. Defaults to 1000.
Example
Source code in datachain/lib/dc.py
collect
¶
Yields rows of values, optionally limited to the specified columns.
Parameters:
-
*cols
(str
, default:()
) –Limit to the specified columns. By default, all columns are selected.
Yields:
-
DataType
–Yields a single item if a column is selected.
-
tuple[DataType, ...]
–Yields a tuple of items if multiple columns are selected.
Example
Iterating over all rows:
Iterating over all rows with selected columns:
Iterating over a single column:
Source code in datachain/lib/dc.py
collect_flatten
¶
Yields flattened rows of values as a tuple.
Parameters:
-
row_factory
–A callable to convert row to a custom format. It should accept two arguments: a list of column names and a tuple of row values.
Source code in datachain/lib/dc.py
column
¶
Returns Column instance with a type if name is found in current schema, otherwise raises an exception.
Source code in datachain/lib/dc.py
datasets
classmethod
¶
datasets(
session: Optional[Session] = None,
settings: Optional[dict] = None,
in_memory: bool = False,
object_name: str = "dataset",
include_listing: bool = False,
) -> DataChain
Generate chain with list of registered datasets.
Example
Source code in datachain/lib/dc.py
distinct
¶
Removes duplicate rows based on uniqueness of some input column(s) i.e if rows are found with the same value of input column(s), only one row is left in the result set.
Example:
Source code in datachain/lib/dc.py
export_files
¶
export_files(
output: str,
signal="file",
placement: ExportPlacement = "fullpath",
use_cache: bool = True,
) -> None
Method that exports all files from chain to some folder.
Source code in datachain/lib/dc.py
filter
¶
Filter the chain according to conditions.
Example
Basic usage with built-in operators
Using glob to match patterns
Using datachain.sql.functions
Combining filters with "or"
Combining filters with "and"
Source code in datachain/lib/dc.py
from_csv
classmethod
¶
from_csv(
path,
delimiter: str = ",",
header: bool = True,
output: OutputType = None,
object_name: str = "",
model_name: str = "",
source: bool = True,
nrows=None,
**kwargs
) -> DataChain
Generate chain from csv files.
Parameters:
-
path
–Storage URI with directory. URI must start with storage prefix such as
s3://
,gs://
,az://
or "file:///". -
delimiter
–Character for delimiting columns.
-
header
–Whether the files include a header row.
-
output
–Dictionary or feature class defining column names and their corresponding types. List of column names is also accepted, in which case types will be inferred.
-
object_name
–Created object column name.
-
model_name
–Generated model name.
-
source
–Whether to include info about the source file.
-
nrows
–Optional row limit.
Example
Reading a csv file:
Reading csv files from a directory as a combined dataset:
Source code in datachain/lib/dc.py
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 |
|
from_dataset
classmethod
¶
from_dataset(
name: str,
version: Optional[int] = None,
session: Optional[Session] = None,
) -> DataChain
Get data from a saved Dataset. It returns the chain itself.
Parameters:
-
name
–dataset name
-
version
–dataset version
Source code in datachain/lib/dc.py
from_hf
classmethod
¶
from_hf(
dataset: Union[str, HFDatasetType],
*args,
session: Optional[Session] = None,
settings: Optional[dict] = None,
object_name: str = "",
model_name: str = "",
**kwargs
) -> DataChain
Generate chain from huggingface hub dataset.
Parameters:
-
dataset
–Path or name of the dataset to read from Hugging Face Hub, or an instance of
datasets.Dataset
-like object. -
session
–Session to use for the chain.
-
settings
–Settings to use for the chain.
-
object_name
–Generated object column name.
-
model_name
–Generated model name.
-
kwargs
–Parameters to pass to datasets.load_dataset.
Example
Load from Hugging Face Hub:
Generate chain from loaded dataset:
Source code in datachain/lib/dc.py
from_json
classmethod
¶
from_json(
path,
type: Literal["binary", "text", "image"] = "text",
spec: Optional[DataType] = None,
schema_from: Optional[str] = "auto",
jmespath: Optional[str] = None,
object_name: Optional[str] = "",
model_name: Optional[str] = None,
print_schema: Optional[bool] = False,
meta_type: Optional[str] = "json",
nrows=None,
**kwargs
) -> DataChain
Get data from JSON. It returns the chain itself.
Parameters:
-
path
–storage URI with directory. URI must start with storage prefix such as
s3://
,gs://
,az://
or "file:///" -
type
–read file as "binary", "text", or "image" data. Default is "binary".
-
spec
–optional Data Model
-
schema_from
–path to sample to infer spec (if schema not provided)
-
object_name
–generated object column name
-
model_name
–optional generated model name
-
print_schema
–print auto-generated schema
-
jmespath
–optional JMESPATH expression to reduce JSON
-
nrows
–optional row limit for jsonl and JSON arrays
Example
infer JSON schema from data, reduce using JMESPATH
infer JSON schema from a particular path
Source code in datachain/lib/dc.py
from_jsonl
classmethod
¶
from_jsonl(
path,
type: Literal["binary", "text", "image"] = "text",
spec: Optional[DataType] = None,
schema_from: Optional[str] = "auto",
jmespath: Optional[str] = None,
object_name: Optional[str] = "",
model_name: Optional[str] = None,
print_schema: Optional[bool] = False,
meta_type: Optional[str] = "jsonl",
nrows=None,
**kwargs
) -> DataChain
Get data from JSON lines. It returns the chain itself.
Parameters:
-
path
–storage URI with directory. URI must start with storage prefix such as
s3://
,gs://
,az://
or "file:///" -
type
–read file as "binary", "text", or "image" data. Default is "binary".
-
spec
–optional Data Model
-
schema_from
–path to sample to infer spec (if schema not provided)
-
object_name
–generated object column name
-
model_name
–optional generated model name
-
print_schema
–print auto-generated schema
-
jmespath
–optional JMESPATH expression to reduce JSON
-
nrows
–optional row limit for jsonl and JSON arrays
Example
infer JSONl schema from data, limit parsing to 1 row
Source code in datachain/lib/dc.py
from_pandas
classmethod
¶
from_pandas(
df: DataFrame,
name: str = "",
session: Optional[Session] = None,
settings: Optional[dict] = None,
in_memory: bool = False,
object_name: str = "",
) -> DataChain
Generate chain from pandas data-frame.
Source code in datachain/lib/dc.py
from_parquet
classmethod
¶
from_parquet(
path,
partitioning: Any = "hive",
output: Optional[dict[str, DataType]] = None,
object_name: str = "",
model_name: str = "",
source: bool = True,
**kwargs
) -> DataChain
Generate chain from parquet files.
Parameters:
-
path
–Storage URI with directory. URI must start with storage prefix such as
s3://
,gs://
,az://
or "file:///". -
partitioning
–Any pyarrow partitioning schema.
-
output
–Dictionary defining column names and their corresponding types.
-
object_name
–Created object column name.
-
model_name
–Generated model name.
-
source
–Whether to include info about the source file.
Example
Reading a single file:
Reading a partitioned dataset from a directory:
Source code in datachain/lib/dc.py
from_records
classmethod
¶
from_records(
to_insert: Optional[Union[dict, list[dict]]],
session: Optional[Session] = None,
settings: Optional[dict] = None,
in_memory: bool = False,
schema: Optional[dict[str, DataType]] = None,
) -> DataChain
Create a DataChain from the provided records. This method can be used for programmatically generating a chain in contrast of reading data from storages or other sources.
Parameters:
-
to_insert
–records (or a single record) to insert. Each record is a dictionary of signals and theirs values.
-
schema
–describes chain signals and their corresponding types
Source code in datachain/lib/dc.py
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 |
|
from_storage
classmethod
¶
from_storage(
uri,
*,
type: Literal["binary", "text", "image"] = "binary",
session: Optional[Session] = None,
settings: Optional[dict] = None,
in_memory: bool = False,
recursive: Optional[bool] = True,
object_name: str = "file",
update: bool = False,
anon: bool = False
) -> Self
Get data from a storage as a list of file with all file attributes. It returns the chain itself as usual.
Parameters:
-
uri
–storage URI with directory. URI must start with storage prefix such as
s3://
,gs://
,az://
or "file:///" -
type
–read file as "binary", "text", or "image" data. Default is "binary".
-
recursive
–search recursively for the given path.
-
object_name
–Created object column name.
-
update
–force storage reindexing. Default is False.
-
anon
–If True, we will treat cloud bucket as public one
Source code in datachain/lib/dc.py
from_values
classmethod
¶
from_values(
ds_name: str = "",
session: Optional[Session] = None,
settings: Optional[dict] = None,
in_memory: bool = False,
output: OutputType = None,
object_name: str = "",
**fr_map
) -> DataChain
Generate chain from list of values.
Source code in datachain/lib/dc.py
gen
¶
gen(
func: Optional[Callable] = None,
params: Union[None, str, Sequence[str]] = None,
output: OutputType = None,
**signal_map
) -> Self
Apply a function to each row to create new rows (with potentially new signals). The function needs to return a new objects for each of the new rows. It returns a chain itself with new signals.
Input-output relationship: 1:N
This method is similar to map()
, uses the same list of parameters, but with
one key differences: It produces a sequence of rows for each input row (like
extracting multiple file records from a single tar file or bounding boxes from a
single image file).
Example
Source code in datachain/lib/dc.py
listings
classmethod
¶
listings(
session: Optional[Session] = None,
in_memory: bool = False,
object_name: str = "listing",
**kwargs
) -> DataChain
Generate chain with list of cached listings. Listing is a special kind of dataset which has directory listing data of some underlying storage (e.g S3 bucket).
Source code in datachain/lib/dc.py
map
¶
map(
func: Optional[Callable] = None,
params: Union[None, str, Sequence[str]] = None,
output: OutputType = None,
**signal_map
) -> Self
Apply a function to each row to create new signals. The function should return a new object for each row. It returns a chain itself with new signals.
Input-output relationship: 1:1
Parameters:
-
func
–Function applied to each row.
-
params
–List of column names used as input for the function. Default is taken from function signature.
-
output
–Dictionary defining new signals and their corresponding types. Default type is taken from function signature. Default can be also taken from kwargs - **signal_map (see below). If signal name is defined using signal_map (see below) only a single type value can be used.
-
**signal_map
–kwargs can be used to define
func
together with it's return signal name in format ofmap(my_sign=my_func)
. This helps define signal names and function in a nicer way.
Example
Using signal_map and single type in output:
Using func and output as a map:
Source code in datachain/lib/dc.py
merge
¶
merge(
right_ds: DataChain,
on: Union[str, Sequence[str]],
right_on: Union[str, Sequence[str], None] = None,
inner=False,
rname="right_",
) -> Self
Merge two chains based on the specified criteria.
Parameters:
-
right_ds
–Chain to join with.
-
on
–Predicate or list of Predicates to join on. If both chains have the same predicates then this predicate is enough for the join. Otherwise,
right_on
parameter has to specify the predicates for the other chain. -
right_on
(Union[str, Sequence[str], None]
, default:None
) –Optional predicate or list of Predicates for the
right_ds
to join. -
inner
(bool
, default:False
) –Whether to run inner join or outer join.
-
rname
(str
, default:'right_'
) –name prefix for conflicting signal names.
Source code in datachain/lib/dc.py
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 |
|
mutate
¶
Create new signals based on existing signals.
This method cannot modify existing columns. If you need to modify an
existing column, use a different name for the new column and then use
select()
to choose which columns to keep.
This method is vectorized and more efficient compared to map(), and it does not extract or download any data from the internal database. However, it can only utilize predefined built-in functions and their combinations.
The supported functions
Numerical: +, -, *, /, rand(), avg(), count(), func(), greatest(), least(), max(), min(), sum() String: length(), split() Filename: name(), parent(), file_stem(), file_ext() Array: length(), sip_hash_64(), euclidean_distance(), cosine_distance()
Example:
dc.mutate(
area=Column("image.height") * Column("image.width"),
extension=file_ext(Column("file.name")),
dist=cosine_distance(embedding_text, embedding_image)
)
This method can be also used to rename signals. If the Column("name") provided as value for the new signal - the old column will be dropped. Otherwise a new column is created.
Example:
Source code in datachain/lib/dc.py
order_by
¶
order_by(*args, descending: bool = False) -> Self
Orders by specified set of signals.
Parameters:
-
descending
(bool
, default:False
) –Whether to sort in descending order or not.
Source code in datachain/lib/dc.py
parse_tabular
¶
parse_tabular(
output: OutputType = None,
object_name: str = "",
model_name: str = "",
source: bool = True,
nrows: Optional[int] = None,
**kwargs
) -> Self
Generate chain from list of tabular files.
Parameters:
-
output
–Dictionary or feature class defining column names and their corresponding types. List of column names is also accepted, in which case types will be inferred.
-
object_name
–Generated object column name.
-
model_name
–Generated model name.
-
source
–Whether to include info about the source file.
-
nrows
–Optional row limit.
-
kwargs
–Parameters to pass to pyarrow.dataset.dataset.
Example
Reading a json lines file:
Reading a filtered list of files as a dataset:
Source code in datachain/lib/dc.py
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 |
|
print_json_schema
¶
Print JSON data model and save it. It returns the chain itself.
Parameters:
-
jmespath
–JMESPATH expression to reduce JSON
-
model_name
–generated model name
Example
print JSON schema and save to column "meta_from":
Source code in datachain/lib/dc.py
print_jsonl_schema
¶
Print JSON data model and save it. It returns the chain itself.
Parameters:
-
jmespath
–JMESPATH expression to reduce JSON
-
model_name
–generated model name
Source code in datachain/lib/dc.py
print_schema
¶
sample
¶
Return a random sample from the chain.
Parameters:
-
n
(int
) –Number of samples to draw.
NOTE: Samples are not deterministic, and streamed/paginated queries or multiple workers will draw samples with replacement.
Source code in datachain/lib/dc.py
save
¶
Save to a Dataset. It returns the chain itself.
Parameters:
-
name
–dataset name. Empty name saves to a temporary dataset that will be removed after process ends. Temp dataset are useful for optimization.
-
version
–version of a dataset. Default - the last version that exist.
Source code in datachain/lib/dc.py
select
¶
Select only a specified set of signals.
Source code in datachain/lib/dc.py
select_except
¶
select_except(*args: str) -> Self
Select all the signals expect the specified signals.
Source code in datachain/lib/dc.py
settings
¶
settings(
cache=None,
parallel=None,
workers=None,
min_task_size=None,
sys: Optional[bool] = None,
) -> Self
Change settings for chain.
This function changes specified settings without changing not specified ones. It returns chain, so, it can be chained later with next operation.
Parameters:
-
cache
–data caching (default=False)
-
parallel
–number of thread for processors. True is a special value to enable all available CPUs (default=1)
-
workers
–number of distributed workers. Only for Studio mode. (default=1)
-
min_task_size
–minimum number of tasks (default=1)
Example
Source code in datachain/lib/dc.py
setup
¶
Setup variables to pass to UDF functions.
Use before running map/gen/agg/batch_map to save an object and pass it as an argument to the UDF.
Example
import anthropic
from anthropic.types import Message
(
DataChain.from_storage(DATA, type="text")
.settings(parallel=4, cache=True)
.setup(client=lambda: anthropic.Anthropic(api_key=API_KEY))
.map(
claude=lambda client, file: client.messages.create(
model=MODEL,
system=PROMPT,
messages=[{"role": "user", "content": file.get_value()}],
),
output=Message,
)
)
Source code in datachain/lib/dc.py
show
¶
show(
limit: int = 20,
flatten=False,
transpose=False,
truncate=True,
) -> None
Show a preview of the chain results.
Parameters:
-
limit
–How many rows to show.
-
flatten
–Whether to use a multiindex or flatten column names.
-
transpose
–Whether to transpose rows and columns.
-
truncate
–Whether or not to truncate the contents of columns.
Source code in datachain/lib/dc.py
shuffle
¶
subtract
¶
subtract(
other: DataChain,
on: Optional[Union[str, Sequence[str]]] = None,
right_on: Optional[Union[str, Sequence[str]]] = None,
) -> Self
Remove rows that appear in another chain.
Parameters:
-
other
(DataChain
) –chain whose rows will be removed from
self
-
on
(Optional[Union[str, Sequence[str]]]
, default:None
) –columns to consider for determining row equality in
self
. If unspecified, defaults to all common columns betweenself
andother
. -
right_on
(Optional[Union[str, Sequence[str]]]
, default:None
) –columns to consider for determining row equality in
other
. If unspecified, defaults to the same values ason
.
Source code in datachain/lib/dc.py
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 |
|
to_pandas
¶
to_pandas(flatten=False) -> DataFrame
Return a pandas DataFrame from the chain.
Parameters:
-
flatten
–Whether to use a multiindex or flatten column names.
Source code in datachain/lib/dc.py
to_parquet
¶
to_parquet(
path: Union[str, PathLike[str], BinaryIO],
partition_cols: Optional[Sequence[str]] = None,
**kwargs
) -> None
Save chain to parquet file.
Parameters:
-
path
–Path or a file-like binary object to save the file.
-
partition_cols
–Column names by which to partition the dataset.
Source code in datachain/lib/dc.py
to_pytorch
¶
Convert to pytorch dataset format.
Parameters:
-
transform
(Transform
, default:None
) –Torchvision transforms to apply to the dataset.
-
tokenizer
(Callable
, default:None
) –Tokenizer to use to tokenize text values.
-
tokenizer_kwargs
(dict
, default:None
) –Additional kwargs to pass when calling tokenizer.
-
num_samples
(int
, default:0
) –Number of random samples to draw for each epoch. This argument is ignored if
num_samples=0
(the default).
Example
Source code in datachain/lib/dc.py
to_records
¶
Convert every row to a dictionary.
DataChainError
¶
Session
¶
Session(
name="",
catalog: Optional[Catalog] = None,
client_config: Optional[dict] = None,
in_memory: bool = False,
)
Session is a context that keeps track of temporary DataChain datasets for a proper cleanup. By default, a global session is created.
Temporary or ephemeral datasets are the ones created without specified name. They are useful for optimization purposes and should be automatically removed.
Temp dataset has specific name format
"session_
The
Temp dataset examples
session_myname_624b41_48e8b4 session_4b962d_2a5dff
Parameters:
name (str): The name of the session. Only latters and numbers are supported. It can be empty. catalog (Catalog): Catalog object.
Source code in datachain/query/session.py
get
classmethod
¶
get(
session: Optional[Session] = None,
catalog: Optional[Catalog] = None,
client_config: Optional[dict] = None,
in_memory: bool = False,
) -> Session
Creates a Session() object from a catalog.
Parameters:
-
session
(Session
, default:None
) –Optional Session(). If not provided a new session will be created. It's needed mostly for simplie API purposes.
-
catalog
(Catalog
, default:None
) –Optional catalog. By default a new catalog is created.